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SUMMARY

This paper describes a new numerical study of the flat plate shock/boundary-layer interaction by using
a weighted high-resolution, total variation diminishing (TVD) scheme. The key difference of this study
from former studies is that new secondary vortices in the separated region have been found for the first
time, with increasing the impinging shock angle or the free-stream Mach number. Copyright © 2000 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

The flat plate shock/boundary-layer interaction problem has become a benchmark of testing
new numerical methods for viscous flow since the work of MacCormack in 1971 [1].
MacCormack, and others that followed, made many numerical simulations of the flat plate
shock/boundary-layer interactions for a fixed set of the free-stream parameters of M�=2.0,
Re�=2.96×105 and an impinging shock angle of 32.585°. In this case, the flow will induce
a separated region with a primary vortex upon the flat plate. Up to 1989, Liou [2] investigated
the effect of the shock strength and the Reynolds number on the separation and found that the
transverse velocity component behind the incident shock is also an important parameter. Liou
did a series of computations for different impinging shock angles of b=31.376°, 32.008°,
32.663°, 33.342° and 34.047°, and then gave the corresponding figures of the effect of the shock
angles on surface pressure and friction coefficient at the fixed M�=2.0 and Re�=2.96×105.
Unfortunately, Liou did not find the appearance of a secondary vortex for b=34.047°. The
present new numerical study has shown that the secondary vortices will be induced in the
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primary vortex, when b]34.047° for M�=2.0 and Re�=2.96×105 or M�\2.0 for the
specified Re�=2.96×105 and b=32.585°. This paper will also analyse the effect of the shock
angle, Mach number and grids on the secondary vortices, and give the corresponding flow
patterns.

2. FORMULATION OF PROBLEM

Consider the two-dimensional shock/boundary-layer interactions on the flat plate, as in Figure
1.

When an oblique shock wave with sufficient strength impinges on a laminar boundary layer,
the boundary layer will induce a separated region and result in a complex viscous flow field.

The inflow boundary is the free-stream conditions, all flow variables at the outflow
boundary are extrapolated with second-order accuracy. At the top boundary, the free-stream
conditions are used ahead of the impinging shock wave and all variables are specified by the
shock relations behind the shock wave. Along the flat plate, u=0, 6=0, (p/(n=0, (T/(n=0
are employed. Other computational parameters are g=1.4, Pr=0.72.

Following Reference [4], a computational domain is chosen to be 05x50.32 and 05y5
0.1215. The flat plate is introduced from x=0.03.

3. THE GOVERNING EQUATIONS

The time-dependent two-dimensional Navier–Stokes equations in Cartesian co-ordinates are
written as follows:
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where U is a vector of the conserved variables, F and G are the inviscid fluxes, Fv and Gv are
the viscous fluxes

Figure 1. Sketch of shock/boundary-layer interaction.
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The components of the shear stress tensor have the form
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and the components of the heat flux vector are
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where Pr is the Prandtl number, M� is the Mach number and Re� is the Reynolds number.
Equation (3.1) has been non-dimensionalized in the following way:
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where L( =0.16 is a reference length.
The equation of state is
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(3.2)
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and the Sutherland formula for the coefficient of viscosity, m, is employed in the present
computation

m=T3/2 1−c
T+c

(3.3)

where c=110.4k/T( �.
Using the generalized co-ordinates transformation

j=j(x, y), h=h(x, y)

the Navier–Stokes equations (3.1) may be rewritten as follows:
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where d=0 and 1 represent the parabolized Navier–Stokes (PNS) and fully Navier–Stokes
(NS) equations respectively.
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In this paper a simple co-ordinate transformation is used
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where b1=1.002 is a parameter of grid density, y1=y/h and h=0.1215 is the height of the
computational domain.
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4. NUMERICAL METHODS

In this paper an explicit–implicit algorithm is employed for solving Equation (3.4), i.e. the
difference scheme is explicit in the j-direction and implicit in the h-direction, in which the
boundary layer near the wall will play an important role. In order to capture accurately shock
waves in the flow field, a weighted form of the Roe-type scheme is applied for the inviscid part
of Equation (3.4) and central difference is applied for the viscous part. As a result, the
resulting system of difference equations can be solved by using the sub-routine for a block
tridiagonal system of equations. The semi-discrete conservative difference scheme has the
following form:
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Based on the idea of the WENO difference scheme [3], the weighted Roe-type scheme is
described for a set of one-dimensional conservative hyperbolic equations
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where

aj+1/2=Rj+1/2
−1 DU0 j+1/2= (a j+1/2
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2 , a j+1/2

3 , a j+1/2
4 )T
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−1 and Lj+1/2

9 are computed by using Roe’s averages.
The variable o is a positive real number that is introduced to avoid the denominator

becoming zero; in this paper, o=10−10.

5. NUMERICAL RESULTS AND ANALYSIS

Some numerical results of the flat plate shock/boundary-layer interactions are presented for
different free-stream Mach numbers and impinging shock angles at a specified Re�=2.96×
105.

(a) M�=2.0, Re�=2.96×105, T�=293 K and different shock angles of b=32.585°,
32.663°, 33.342°, 34.047°, 34.50° and 35.50°;

(b) M�=2.1, Re�=2.96×105, T�=293 K and b=32.585°;
(c) M�=2.2, Re�=2.96×105, T�=293 K and b=32.585°.

For case (a), it was found that when bB34.047°, the separated region contains only a
primary vortex, which has been captured numerically by previous studies (see Figure 2; when
b]34.047°, a new secondary vortex located in the primary vortex has been observed and was
enlarged by increasing the shock angle for the specified M� and Re�. A variation of the
secondary vortices is clearly displayed in Figures 2–5, 9 and 10 for a grid of 65×65. Notice
that Liou [2] did not find the appearance of a small secondary vortex for b=34.047°, even
though a finer grid of 75×65 was used in that computation.

Furthermore, for the specified Reynolds number and shock angle of Re�=2.96×105 and
b=32.58°, the effect of free-stream Mach number on the vortex structure was also studied. As
a result, it was found that when M�\2.0, a new secondary vortex occurred in the primary
vortex and was enlarged by increasing the Mach number M�. Figures 6 and 7 show such a
variation of the secondary vortices. The same grid of 65×65 was adopted in this computation.

In order to analyse the effect of the grid on vortex structure, three grids of 33×33, 65×65
and 129×129 were applied to simulate the flat plate shock/boundary-layer interaction
problem by using the weighted Roe-type scheme. The coarsest grid, 33×33, did not capture
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Figure 2. Streamlines (b=32.585° and M�=2.0, 65×65).

Figure 3. Streamlines (b=34.047° and M�=2.0, 65×65).

Figure 4. Streamlines (b=34.5° and M�=2.0, 65×65).
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Figure 5. Streamlines (b=35.5° and M�=2.0, 65×65).

Figure 6. Streamlines (b=32.585° and M�=2.1, 65×65).

Figure 7. Streamlines (b=32.585° and M�=2.2, 65×65).
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Figure 8. Streamlines (b=34.5° and M�=2.0, 129×129).

Figure 9. Skin friction distribution on plate, 65×65.

the secondary vortex for b=34.047°. Numerical results show that both finer grids of 65×65
and 129×129 have the same vortex structure, but the grid of 129×129 yields a slightly larger
primary vortex and a larger secondary vortex. This can be seen from Figures 4, 8, 11 and 12.

Many numerical experiments have shown that the second-order-accurate total variation
diminishing (TVD) schemes have the capability of accurately capturing shock discontinuities in
inviscid and viscous flow fields, but they cannot simulate correctly separated vortices and
complicated viscous flow fields. The reason is due to the first-order accuracy of the TVD
schemes at the extremum points. Like the WENO schemes [3], the weighted TVD schemes used
in this paper have three desirable features: (1) they improve the accuracy of the original TVD
schemes and keep the same non-oscillatory property near the discontinuities; (2) they yield
smoother numerical fluxes, which are important for the fast convergence to steady solution; (3)
they reduce the heavy usage of logical statements appearing in the TVD schemes. All these
features have been validated by the present numerical experiments.
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Figure 10. Pressure distribution on plate, 65×65; 1, b=32.585° and M�=2.0; 2, b=33.342° and
M�=2.0; 3, b=34.047° and M�=2.0; 4, b=34.5° and M�=2.0; 5, b=35.5° and M�=2.0; 6,

b=32.585° and M�=2.1; 7, b=32.585° and M�=2.2.

Figure 11. Skin friction distributions on plate. Comparison of three different grids with b=34.5° and
M�=2.0.

Notice that the weighted Roe-type scheme, (4.2) and (4.3), enhances the accuracy of the
original Roe-type scheme at the extremum points and near the vortices. However, the weighted
scheme is a second-order accurate. In order to demonstrate this fact, the flat plate shock/
boundary-layer interaction problem has been simulated for the grid 65×65 by using the
Roe-type scheme [5], the weighted Roe-type scheme and the third-order Chakravathy–Osher
scheme [6]. From Figures 13 and 14, it can be seen that the weighted Roe-type scheme yields
numerical solutions located between the Roe-type scheme and Chakravathy–Osher scheme.
Among all these schemes, the weighted scheme has a faster convergence rate, so it is more
efficient for the computation with a finer grid.

All the computations in this paper were carried out by the NS equations. Comparison of the
full NS equations and PNS equations showed that numerical solutions have only small
differences if the Reynolds number is large enough. The comparative results will be given in
another paper.
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Figure 12. Pressure distributions on plate. Comparison of three different grids with b=34.5° and
M�=2.0.

Figure 13. Skin friction distributions on plate. Comparison of three different grids with b=34.5° and
M�=2.0, 65×65.

Figure 14. Pressure distributions on plate. Comparison of three different grids with b=34.5° and
M�=2.0, 65×65.
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